Spatial Light Modulator – 1920 x 1152

Meadowlark Optics Liquid Crystal on Silicon (LCoS) Spatial Light Modulators (SLMs) are uniquely designed for pure phase applications and incorporate analog data addressing with high refresh rates. This combination provides users with the fastest response times and highest phase stabilities commercially available. Meadowlark offers both transmissive and reflective SLMs in either one- or two dimensions. Phase-only SLMs can also be used for amplitude-only or a combination of both. The 1920 x 1152 SLM is good for applications requiring high speed, high diffraction efficiency, low phase ripple and high-power lasers.

High Phase Stability - Meadowlark Optics’ SLMs are known for having the highest phase stability on the market. Our backplanes are custom designed with high refresh rates and direct analog drive schemes resulting in phase ripple as low as 0.2% (0.002 π radians) for standard speed, and as low as 2% (0.02 π radians) for high-speed. Phase ripple is quantified by measuring the 1st order ripple as compared to the mean intensity while writing a repeating linear phase ramp to the SLM.

[Graph showing phase ripple measurements]

1st order Intensity when writing a phase ramp to the SLM

Hardware Interface Options - Meadowlark Optics’ SLMs come with multiple hardware interface options. For customers that prefer the computer to view the SLM as a secondary monitor, we offer a HDMI controller with output triggers for synchronization. For customers that require high speed operation, we offer PCIe controllers with input and output triggers and low latency image transfers.

SLM Features

- High resolution
- High speed
- High Phase Stability
- Pure analog phase control
- High first order efficiency
- High reflectivity
- High power handling
- Compact design
- Wavelengths from 400-1650 nm

Software Features

- Input and Output Triggers
- Image Generation
- Automated Sequencing
- Wavefront Calibration
- Global and Regional Look Up Tables
**Diffraction Efficiency (1st-order)** - This is the percentage of light measured in the 1st-order when writing a linear repeating phase ramp to the SLM as compared to the light in the 0th order when no pattern is written to the SLM. Diffraction efficiency varies as a function of the number of phase levels in the phase ramp. An example measurement, taken at 1064 nm is shown below left, for phase ramps with 4 to 32 phase levels between 0 and 2π. The plot below right shows sample 1st order diffraction efficiency measurements, as a function of the phase ramp period, taken at various wavelengths.

![Measured 1st Order Diffraction Efficiency](image)

**Software** - Meadowlark Optics’ SLMs are supplied with a GUI and software development kits that support LabVIEW, Matlab, and C++. The software allows the user to generate images, to correct aberrations, to calibrate the global and/or regional optical response over ‘n’ waves of modulation, to sequence at a user defined frame rate, and to monitor the SLM temperature.

**Global or Regional Calibrations** - Regional calibrations provide the highest spatial phase fidelity commercially available by regionally characterizing the phase response to voltage and calibrating on a pixel by pixel basis.

**Image Generation Capabilities**
- Bessel Beams: Spiral Phase, Fork, Concentric Rings, Axicons
- Lens Functions: Cylindrical, Spherical
- Gratings: Blazed, Sinusoid
- Diffraction Patterns: Stripes, Checkerboard, Solid, Random Phase
- Holograms, Zernike Polynomials, Superimpose Images
High Power Capability - Meadowlark Optics’ Spatial Light Modulators have been tested for compatibility with high power pulsed and CW lasers. In the graphs below, the optical response of the 1920 x 1152 pixel SLM with and without liquid cooling was measured as the incident power was incremented up to 15 GW/cm² peak power or 204 W/cm² average power.

1920 x 1152 Analog Spatial Light Modulator Specifications

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Wavefront Distortion</th>
<th>Standard SLM with HDMI Controller</th>
<th>Mid Speed SLM with PCIe Controller</th>
<th>High Speed SLM with PCIe Controller</th>
<th>AR Coatings (Ravg &lt;1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>405 nm</td>
<td>λ/3</td>
<td>6 ms / 31 Hz</td>
<td>3.0 ms / 281.6 Hz</td>
<td>N/A</td>
<td>400 – 800 nm</td>
</tr>
<tr>
<td>532 nm</td>
<td>λ/5</td>
<td>9 ms / 31 Hz</td>
<td>4.5 ms / 211.2 Hz</td>
<td>1.4 ms / 422.4 Hz</td>
<td>400 – 800 nm</td>
</tr>
<tr>
<td>635 nm</td>
<td>λ/6</td>
<td>12 ms / 31 Hz</td>
<td>5.9 ms / 169.0 Hz</td>
<td>1.8 ms / 422.4 Hz</td>
<td>400 – 800 nm</td>
</tr>
<tr>
<td>785 nm</td>
<td>λ/7</td>
<td>19 ms / 31 Hz</td>
<td>10.0 ms / 93.7 Hz</td>
<td>2.3 ms / 422.4 Hz</td>
<td>600 – 1300 nm</td>
</tr>
<tr>
<td>1064 nm</td>
<td>λ/10</td>
<td>25 ms / 31 Hz</td>
<td>13.0 ms / 76.8 Hz</td>
<td>3.3 ms / 281.6 Hz</td>
<td>600 – 1300 nm</td>
</tr>
<tr>
<td>1550 nm</td>
<td>λ/12</td>
<td>33 ms / 31 Hz</td>
<td>24.8 ms / 40.2 Hz</td>
<td>4.7 ms / 211.2 Hz</td>
<td>850 – 1650 nm</td>
</tr>
</tbody>
</table>

*Silicon backplane, performance varies as a function of wavelength.

HDMI 1920 x 1152 System Dimensions

PCie 1920 x 1152 System Dimensions